Keyword [Universal Adversarial Perturbations]
Akhtar N, Liu J, Mian A. Defense against universal adversarial perturbations[C]Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 3389-3398.
Keyword [Universal Adversarial Perturbations]
Akhtar N, Liu J, Mian A. Defense against universal adversarial perturbations[C]Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 3389-3398.
Keyword [DQN]
Bellver M, Giroinieto X, Marques F, et al. Hierarchical Object Detection with Deep Reinforcement Learning[J]. Advances in Parallel Computing, 2016
Keyword [Ensemble]
Xie C, Wang J, Zhang Z, et al. Mitigating adversarial effects through randomization[J]. arXiv preprint arXiv:1711.01991, 2017.
Prakash A, Moran N, Garber S, et al. Deflecting adversarial attacks with pixel deflection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8571-8580.
Baluja S, Fischer I. Adversarial transformation networks: Learning to generate adversarial examples[J]. arXiv preprint arXiv:1703.09387, 2017.
Keyword [HGD]
Liao F, Liang M, Dong Y, et al. Defense against adversarial attacks using high-level representation guided denoiser[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1778-1787.
Guo C, Rana M, Cisse M, et al. Countering adversarial images using input transformations[J]. arXiv preprint arXiv:1711.00117, 2017.
Keyword [MI-FGSM] [Ensemble]
Dong Y, Liao F, Pang T, et al. Boosting adversarial attacks with momentum[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 9185-9193.
Xie C, Wang J, Zhang Z, et al. Adversarial examples for semantic segmentation and object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 1369-1378.
Arnab A, Miksik O, Torr P H S. On the robustness of semantic segmentation models to adversarial attacks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 888-897.