Keyword [ShuffleNetv2]
Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131.
Keyword [ShuffleNetv2]
Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131.
Keyword [MobileNetV2]
Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 4510-4520.
Keyword [FlowNet2.0] [FlyingThings3D]
Ilg E, Mayer N, Saikia T, et al. Flownet 2.0: Evolution of optical flow estimation with deep networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2462-2470.
Keyword [FlowNet] [Correlation Layer]
Dosovitskiy A, Fischer P, Ilg E, et al. Flownet: Learning optical flow with convolutional networks[C]//Proceedings of the IEEE international conference on computer vision. 2015: 2758-2766.
Keyword [P-Darts]
Chen X, Xie L, Wu J, et al. Progressive Differentiable Architecture Search: Bridging the Depth Gap between Search and Evaluation[J]. arXiv preprint arXiv:1904.12760, 2019.
Keyword [Darts]
Liu H, Simonyan K, Yang Y. Darts: Differentiable architecture search[J]. arXiv preprint arXiv:1806.09055, 2018.
Ye L, Rochan M, Liu Z, et al. Cross-Modal Self-Attention Network for Referring Image Segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 10502-10511.
Yang S, Li G, Yu Y. Cross-Modal Relationship Inference for Grounding Referring Expressions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 4145-4154.
Keyword [DGA]
Yang S, Li G, Yu Y. Dynamic Graph Attention for Referring Expression Comprehension[J]. arXiv preprint arXiv:1909.08164, 2019.
Keyword [LGRAN]
Wang P, Wu Q, Cao J, et al. Neighbourhood watch: Referring expression comprehension via language-guided graph attention networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 1960-1968.